Discrete Data Assimilation in the Lorenz and 2D Navier–Stokes Equations
نویسندگان
چکیده
Consider a continuous dynamical system for which partial information about its current state is observed at a sequence of discrete times. Discrete data assimilation inserts these observational measurements of the reference dynamical system into an approximate solution by means of an impulsive forcing. In this way the approximating solution is coupled to the reference solution at a discrete sequence of points in time. This paper studies discrete data assimilation for the Lorenz equations and the incompressible two-dimensional Navier–Stokes equations. In both cases we obtain bounds on the time interval h between subsequent observations which guarantee the convergence of the approximating solution obtained by discrete data assimilation to the reference solution.
منابع مشابه
Determining Modes and Grashof Number in 2D Turbulence—A Numerical Case Study
We study how the number of numerically determining modes in the Navier–Stokes equations depends on the Grashof number. Consider the two-dimensional incompressible Navier–Stokes equations in a periodic domain with a fixed time-independent forcing function. We increase the Grashof number by rescaling the forcing and observe through numerical computation that the number of numerically determining ...
متن کاملA comparative study between two numerical solutions of the Navier-Stokes equations
The present study aimed to investigate two numerical solutions of the Navier-Stokes equations. For this purpose, the mentioned flow equations were written in two different formulations, namely (i) velocity-pressure and (ii) vorticity-stream function formulations. Solution algorithms and boundary conditions were presented for both formulations and the efficiency of each formulation was investiga...
متن کاملScientific Flow Field Simulation of Cruciform Missiles Through the Thin Layer Navier Stokes Equations
The thin-layer Navier-Stokes equations are solved for two complete missile configurations on an IBM 3090-200 vectro-facility supercomputer. The conservation form of the three-dimensional equations, written in generalized coordinates, are finite differenced and solved on a body-fitted curvilinear grid system developed in conjunction with the flowfield solver. The numerical procedure is based on ...
متن کاملOptimization with the time-dependent Navier-Stokes equations as constraints
In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...
متن کاملOn the long-time stability of the implicit Euler scheme for the 2D space-periodic Navier-Stokes equations
In this paper we study the stability for all positive time of the fully implicit Euler scheme for the two-dimensional Navier–Stokes equations. More precisely, we consider the time discretization scheme and with the aid of the discrete Gronwall lemma and the discrete uniform Gronwall lemma we prove that the numerical scheme is stable.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010